翻訳と辞書
Words near each other
・ Mixtec writing
・ Mixteca Alta Formative Project
・ Mixteca Region
・ Mixtecan languages
・ Mixteco River
・ Mixtepec Mixtec
・ Mixtepec Zapotec
・ Mixtepec Zapotec (disambiguation)
・ Mixed volume
・ Mixed waste
・ Mixed waste (radioactive/hazardous)
・ Mixed Wood Plains Ecozone (CEC)
・ Mixed youth choir Leiden orphanage
・ Mixed-blood
・ Mixed-cell lymphoma
Mixed-data sampling
・ Mixed-design analysis of variance
・ Mixed-excitation linear prediction
・ Mixed-field agglutination
・ Mixed-function oxidase
・ Mixed-income housing
・ Mixed-interval chord
・ Mixed-linkage glucan
・ Mixed-member proportional representation
・ Mixed-mode
・ Mixed-mode chromatography
・ Mixed-mode ventilation
・ Mixed-NOCs at the 2014 Summer Youth Olympics
・ Mixed-NOCs participation at the 2010 Summer Youth Olympics
・ Mixed-NOCs participation at the 2012 Winter Youth Olympics


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mixed-data sampling : ウィキペディア英語版
Mixed-data sampling
Mixed-data sampling (MIDAS) is an econometric regression or filtering method developed by Ghysels ''et al.'' A simple regression example has the independent variable appearing at a higher frequency than the dependent variable:
:y_t = \beta_0 + \beta_1 B(L^;\theta)x_t^ + \varepsilon_t^,\,
where ''y'' is the dependent variable, ''x'' is the regressor, ''m'' denotes the frequency – for instance if ''y'' is yearly x_t^ is quarterly – \varepsilon is the disturbance and B(L^;\theta) is a lag distribution, for instance the Beta function or the Almon Lag.
The regression models can be viewed in some cases as substitutes for the Kalman filter when applied in the context of mixed frequency data. Bai, Ghysels and Wright (2010) examine the relationship between MIDAS regressions and Kalman filter state space models applied to mixed frequency data. In general, the latter involve a system of equations, whereas in contrast MIDAS
regressions involve a (reduced form) single equation. As a consequence, MIDAS regressions might be less efficient, but also less prone to specification errors. In cases where the MIDAS regression is only an approximation, the approximation errors tend to be small.
==See also==

* Distributed lag
* ARMAX

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mixed-data sampling」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.